Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Chinese Journal of Industrial Hygiene and Occupational Diseases ; (12): 324-332, 2023.
Article in Chinese | WPRIM | ID: wpr-986007

ABSTRACT

Objective: To investigate the effect and mechanism of miR-96-5p on apoptosis of PC12 cells induced by maltol aluminum. Methods: In January 2021, PC12 cells at logarithmic growth phase were divided into blank control group and low, medium and high dose group. Cells in each group were treated with 0, 100, 200 and 400 μmol/L maltol aluminum for 24 hours respectively. Cells were collected and cell apoptosis rates were detected by flow cytometry, miR-96-5p and insulin receptor substrate 1 (IRS1) mRNA expressions were detected by qRT-PCR, and the protein expression levels of cysteine protease 3 (Caspase3) 、activated cysteine protease 3 (Cleaved-caspase3) 、IRS1、phosphorylated protein kinase B (p-AKT) and phosphorylated glucose synthesis kinase 3β (p-GSK3β) were detected by western blotting. The target binding relationship between miR-96-5p and IRS1 was detected by double luciferase reporter gene experiment. The miR-96-5p inhibitor cells and negative control cells were constructed after transfecting PC12 cells with miR-96-5p inhibitor for 24 hours. The cells were divided into blank control group, negative control group, aluminum exposure group, aluminum exposure+negative control group, aluminum exposure+miR-96-5p inhibition group, and miR-96-5p inhibition group. After transfecting PC12 cells with miR-96-5p inhibition and IRS1 siRNA for 24 h, the cells were divided into aluminum exposure+miR-96-5p inhibition+negative control group and aluminum exposure+miR-96-5p inhibition+IRS1 inhibition group. The control group was cultured in complete culture medium, and cells in the aluminum exposure group were treated with 200 μmol/L maltol aluminum for 24 hours. Cells in each group were collected and the apoptosis rate, miR-96-5p and IRS1 mRNA expression levels, as well as protein expression levels of Caspase3, Cleaved-caspase3, IRS1, p-AKT, and p-GSK3β were measured. Results: After 24 hours of exposure, compared with blank control group and low-dose group, the apoptosis rates, relative expressions of Caspase3 and Cleaved-caspase3 proteins, and relative expressions of miR-96-5p in the medium and high-dose groups of PC12 cells were significantly increased, while the relative expression levels of IRS1 mRNA, IRS1, p-AKT and p-GSK3β proteins were significantly decreased (P<0.05). Targetscan prediction and double luciferase report experiment both proved that IRS1 was a direct target gene of miR-96-5p. In the transfection experiment, compared with the aluminum exposure group, the apoptosis rate, the relative expressions of Caspase3 and Cleaved-caspase3 proteins, the relative expression of miR-96-5p in the aluminum exposure+miR-96-5p inhibition group were significantly decreased, while the relative expression levels of IRS1 mRNA and IRS1, p-AKT and p-GSK3β proteins were significantly increased (P<0.05). In the IRS1 low expression experiment, compared with the aluminum exposure+miR-96-5p inhibition+negative control group, the apoptosis rate, the relative expressions of Caspase3 and Cleaved-caspase3 proteins in the aluminum exposure+miR-96-5p inhibition+IRS1 inhibition group were significantly increased, while the relative expression levels of IRS1 mRNA and IRS1, p-AKT and p-GSK3β proteins were significantly decreased (P<0.05) . Conclusion: The increased expression of miR-96-5p and the targeted inhibition of IRS1 may be one of the mechanisms of apoptosis of PC12 cells induced by maltol aluminum exposure.


Subject(s)
Animals , Rats , Aluminum/toxicity , Apoptosis , Cell Proliferation , Glycogen Synthase Kinase 3 beta/metabolism , Insulin Receptor Substrate Proteins/metabolism , MicroRNAs/metabolism , PC12 Cells , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger
2.
Journal of Southern Medical University ; (12): 392-398, 2022.
Article in Chinese | WPRIM | ID: wpr-936328

ABSTRACT

OBJECTIVE@#To investigate the effect CD36 deficiency on muscle insulin signaling in mice fed a normal-fat diet and explore the possible mechanism.@*METHODS@#Wild-type (WT) mice and systemic CD36 knockout (CD36-/-) mice with normal feeding for 14 weeks (n=12) were subjected to insulin tolerance test (ITT) after intraperitoneal injection with insulin (1 U/kg). Real-time PCR was used to detect the mRNA expressions of insulin receptor (IR), insulin receptor substrate 1/2 (IRS1/2) and protein tyrosine phosphatase 1B (PTP1B), and Western blotting was performed to detect the protein expressions of AKT, IR, IRS1/2 and PTP1B in the muscle tissues of the mice. Tyrosine phosphorylation of IR and IRS1 and histone acetylation of PTP1B promoter in muscle tissues were detected using co-immunoprecipitation (Co-IP) and chromatin immunoprecipitation (ChIP), respectively.@*RESULTS@#CD36-/- mice showed significantly lowered insulin sensitivity with obviously decreased area under the insulin tolerance curve in comparison with the WT mice (P < 0.05). CD36-/- mice also had significantly higher serum insulin concentration and HOMA-IR than WT mice (P < 0.05). Western blotting showed that the p-AKT/AKT ratio in the muscle tissues was significantly decreased in CD36-/- mice as compared with the WT mice (P < 0.01). No significant differences were found in mRNA and protein levels of IR, IRS1 and IRS2 in the muscle tissues between WT and CD36-/- mice (P>0.05). In the muscle tissue of CD36-/- mice, tyrosine phosphorylation levels of IR and IRS1 were significantly decreased (P < 0.05), and the mRNA and protein levels of PTP1B (P < 0.05) and histone acetylation level of PTP1B promoters (P < 0.01) were significantly increased as compared with those in the WT mice. Intraperitoneal injection of claramine, a PTP1B inhibitor, effectively improved the impairment of insulin sensitivity in CD36-/- mice.@*CONCLUSION@#CD36 is essential for maintaining muscle insulin sensitivity under physiological conditions, and CD36 gene deletion in mice causes impaired insulin sensitivity by up-regulating muscle PTP1B expression, which results in detyrosine phosphorylation of IR and IRS1.


Subject(s)
Animals , Mice , Gene Deletion , Histones/genetics , Insulin , Insulin Receptor Substrate Proteins/metabolism , Insulin Resistance/genetics , Membrane Cofactor Protein/genetics , Mice, Knockout , Muscles/metabolism , Phosphoric Monoester Hydrolases/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger/metabolism , Receptor, Insulin/metabolism , Tyrosine/genetics , Up-Regulation
3.
Clinics ; 73(supl.1): e566s, 2018. tab, graf
Article in English | LILACS | ID: biblio-974958

ABSTRACT

The insulin receptor substrate (IRS) proteins are a family of cytoplasmic proteins that integrate and coordinate the transmission of signals from the extracellular to the intracellular environment via transmembrane receptors, thus regulating cell growth, metabolism, survival and proliferation. The PI3K/AKT/mTOR and MAPK signaling pathways are the best-characterized downstream signaling pathways activated by IRS signaling (canonical pathways). However, novel signaling axes involving IRS proteins (noncanonical pathways) have recently been identified in solid tumor and hematologic neoplasm models. Insulin receptor substrate-1 (IRS1) and insulin receptor substrate-2 (IRS2) are the best-characterized IRS proteins in hematologic-related processes. IRS2 binds to important cellular receptors involved in normal hematopoiesis (EPOR, MPL and IGF1R). Moreover, the identification of IRS1/ABL1 and IRS2/JAK2V617F interactions and their functional consequences has opened a new frontier for investigating the roles of the IRS protein family in malignant hematopoiesis. Insulin receptor substrate-4 (IRS4) is absent in normal hematopoietic tissues but may be expressed under abnormal conditions. Moreover, insulin receptor substrate-5 (DOK4) and insulin receptor substrate-6 (DOK5) are linked to lymphocyte regulation. An improved understanding of the signaling pathways mediated by IRS proteins in hematopoiesis-related processes, along with the increased development of agonists and antagonists of these signaling axes, may generate new therapeutic approaches for hematological diseases. The scope of this review is to recapitulate and review the evidence for the functions of IRS proteins in normal and malignant hematopoiesis.


Subject(s)
Humans , Signal Transduction/physiology , Leukemia, Lymphoid/metabolism , Leukemia, Myeloid/metabolism , Insulin Receptor Substrate Proteins/metabolism , Hematopoiesis/physiology , Leukemia, Lymphoid/physiopathology , Leukemia, Myeloid/physiopathology , Insulin Receptor Substrate Proteins/physiology
4.
Biol. Res ; 44(3): 251-257, 2011. ilus
Article in English | LILACS | ID: lil-608621

ABSTRACT

Chronic administration of glucocorticoids induces insulin resistance that is compensated by an increase in p-cell function and mass. Since insulin signaling is involved in the control of p-cell function and mass, we investigated the content of insulin pathway proteins in pancreatic islets. Rats were made insulin resistant by daily administration of dexamethasone (1mg/kg, b.w., i.p.) for 5 consecutive days (DEX), whilst control rats received saline (CTL). Circulating insulin and insulin released from isolated islets were measured by radioimmunoassay whereas the content of proteins was analyzed by Western blotting. DEX rats were hyperinsulinemic and exhibited augmented insulin secretion in response to glucose (P < 0.01). The IRa-subunit, IRS-1, Shc, AKT, p-p70S6K, ERK1/2, p-ERK1/2, and glucocorticoid receptor protein levels were similar between DEX and CTL islets. However, the IRp-subunit, p-IRp-subunit, IRS-2, PI3-K, p-AKT and p70S6K protein contents were increased in DEX islets (P < 0.05). We conclude that IRS-2 may have a major role, among the immediate substrates of the insulin receptor, to link activated receptors to downstream signaling components related to islet function and growth in this insulin-resistant rat model.


Subject(s)
Animals , Male , Rats , Dexamethasone/adverse effects , Glucocorticoids/adverse effects , Insulin Resistance , Insulin Receptor Substrate Proteins/metabolism , Insulin/metabolism , Islets of Langerhans/drug effects , Insulin , Islets of Langerhans/metabolism , Rats, Wistar , Signal Transduction , Shc Signaling Adaptor Proteins/metabolism
5.
Arq. bras. endocrinol. metab ; 53(4): 399-408, jun. 2009. ilus
Article in Portuguese | LILACS | ID: lil-520763

ABSTRACT

O prejuízo no transporte de glicose estimulada por insulina no músculo constitui um defeito crucial para o estabelecimento da intolerância à glicose e do diabetes tipo 2. Por outro lado, é notório o conhecimento de que tanto o exercício aeróbio agudo quanto o crônico podem ter efeitos benéficos na ação da insulina em estados de resistência à insulina. No entanto, pouco se sabe sobre os efeitos moleculares pós-exercício sobre a sinalização da insulina no músculo esquelético. Assim, esta revisãoapresenta novos entendimentos sobre os mecanismos por meio dos quais o exercício agudo restaura a sensibilidade à insulina, com destaque ao importante papel que proteínas inflamatórias e a S-nitrosação possuem sobre a regulação de proteínas da via de sinalização da insulina no músculo esquelético.


Insulin resistance of skeletal muscle glucose transport is a key-defect for the development of impaired glucose tolerance and type 2 diabetes. However, it is known that both an acute bout of exercise and chronic endurance exercise training can bring beneficial effects on insulin action in insulin-resistant states. However, little is currently known about the molecular effects of acute exercise on muscle insulin signaling in the post-exercise state in insulin-resistant organisms. This review provides new insight into the mechanism through which acute exercise restores insulin sensitivity, highlighting an important role for inflammatory proteins and S-nitrosation in the regulation of insulin signaling proteins in skeletal muscle.


Subject(s)
Humans , Exercise/physiology , Insulin Resistance/physiology , Muscle, Skeletal/metabolism , Signal Transduction/physiology , Glucose/metabolism , Inflammation/metabolism , Insulin Receptor Substrate Proteins/metabolism , Nitrosation , Nitrates/metabolism
6.
Rio de Janeiro; s.n; 2009. 68 p. ilus, tab.
Thesis in Portuguese | LILACS | ID: lil-576284

ABSTRACT

O comportamento alimentar de uma espécie é determinado por um conjunto de características filogenéticas, ontogenéticas, e epigenéticas, e regulado por fatores internos e externos ao organismo. Os fenômenos naturais que regem a vida no nosso planeta são periódicos em sua maioria, e a oferta de alimentos não é exceção. Cada safra é seguida de uma entressafra, e este ritmo sincroniza diversos outros ritmos, exógenos e endógenos, capazes de determinar a sobrevivência de espécies. Uma das estratégias adaptativas mais primitivas e bem sucedidas na dinâmica oscilatória da natureza, é o acúmulo de reservas. Nossa espécie, nos últimos 50 anos, vive uma situação de grande oferta de alimentos, período este extremamente pequeno, se visto sob a ordem de grandeza da evolução humana. Este fenômeno tem sido determinante na prevalência do depósito de energia e em decorrência, do surgimento da obesidade e suas consequentes patologias. O hipotálamo está intimamente associado à homeostase energética e ao comportamento alimentar. No núcleo arqueado hipotalâmico encontram-se populações neuronais orexigênicas e anorexigênicas, dentre as quais, as que expressam os neuroreceptores POMC, NPY e o substrato de receptor de insulina IRS2. A modificação da expressão destas proteínas tem sido associada à alterações do comportamento alimentar, bem como à impressão e programação metabólica, capazes de induzir obesidade em ratos adultos. A correlação desta circuitaria neuronal com o comportamento alimentar, porém, ainda não está suficientemente compreendida. A detecção do estado de fome-saciedade nos ratos, fundamental no estudo da neurofisiologia relacionada ao comportamento alimentar, vem sendo obtida via de regra, por meio de procedimentos complexos de observação comportamental. O presente estudo contribui para o conhecimento de padrões de alimentação determinados por condições nutricionais, e sua relação com a expressão neurofisiológica hipotalâmica dos neurônios POMC, NPY e IRS2 ...


The feeding behavior of a specie is determined by a group of phylogenetic, ontogenetic, and epigenetic features, and regulated by internal and external factors to the organism. The natura phenomena that govern life in our planet are mainly periodic, and the food stocks is not an exception. Each harvest is followed by a time between harvests, and this rhythm synchronizes other several exogenous and endogenous rhythms, capable of determining the survival of species. One of the most primitive strategies of adaptative evolution of species, and what usually happens regarding the oscillatory dynamics of nature, is the reserve accumulation. Our species, in the last 50 years, has been living a situation of great food offer, such period is exremely small if analysed under the greatness order of the human evolution. This phenomenon has been decisive in the prevalence of the energy deposit and, in consequence, determining the appearance of obesity and its consequent pathologies. The hypothalamus is intimately associated to the energy homeostasis and the feeding behavior. In the arcuate nucleous are orexigenic and anorexigenic neuronal populations, that express the neuroreceptors POMC, NPY and insulin receptor substratum IRS2. The modification of these proteins expression, has been associated to alterations of the feeding behavior, as well as to the metabolic imprinting and programming, capable to induce obesity in adult rats. The correlation of this neuronal circuits with the alimentary behavior, however, it is not yet sufficiently understood. The detection of the hunger-satiation state in the rat, crucial in the neurophysiology studies related to the alimentary behavior, has been obtained through complex procedures of behavioral observation. The present study contributed to the knowledge of certain feeding patterns for nutritional conditions, and its relationship with the neurophysiological expression of POMC, NPY and IRS2 neurons. Using the metabolic programming ...


Subject(s)
Animals , Rats , Feeding Behavior/physiology , Neuropeptide Y/metabolism , Arcuate Nucleus of Hypothalamus/metabolism , Food Deprivation/physiology , Pro-Opiomelanocortin/metabolism , Insulin Receptor Substrate Proteins/metabolism , Satiety Response/physiology , Circadian Rhythm/physiology , Nutritional Status , Obesity/metabolism , Overweight/metabolism
7.
Rio de Janeiro; s.n; 2009. 113 p. ilus.
Thesis in Portuguese | LILACS | ID: lil-564731

ABSTRACT

A insuficiência cardíaca (IC) é a evolução final das várias formas de doenças cardiovascular, sendo resultado de modificações estruturais, metabólicas e de contratilidade miocárdica. A fim de compreender o papel na dinâmica do metabolismo cardíaco no estado basal e na sobrecarga de pressão, utilizamos os modelos de cre-lox com deleção específica no coração para substrato do receptor de insulina (IRS) e co-ativador do PPAR (PGC-1b) e analisamos a estrutura cardíaca (histologia e estereologia), função cardíaca (ecocardiograma e técnica de Working heart), o metabolismo (isolamento de cardiomiócito e captação de glicose), ação hormonal (Western Blotting), expressão gênica (PCR-RT) de enzimas do metabolismo (lipídico, glicídico, da cadeia respiratória fatores transcricionais e hipertróficos) e a função mitocondrial. Verificamos, nos CIRS12KO, disfunção cardíaca grave, disfunção mitocondrial e prejuízo na expressão gênica das enzimas do metabolismo energético. Nos PGC-1BKO observamos disfunção mitocondrial e alteração de expressão gênica das enzimas do metabolismo energético quando submetidos à sobrecarga de pressão. Através do estudo do metabolismo cardíaco e da expressão gênica nestes diferentes modelos conseguimos explorar as vias metabólicas que levam a hipertrofia compensada à IC. Sugerimos que o mecanismo responsável pela descompensação seja a disfunção mitocondrial em conseqüência à alteração da expressão gênica. E que IRS e o PGC-1B são fatores chaves da dinâmica cardíaca, e que são indispensáveis para a estrutura e funcionamento cardíaco. Além de representar alvo promissor para limitar a transição de hipertrofia cardíaca compensada a insuficiência cardíaca...


Heart failure (HF) is the end stage of different types of cardiovascular diseases and it is characterized by changes in the metabolic and myocardial contractility. We use the models cre-lox with specific knockout for insulin receptor substrate (IRS) and co-activator of PPAR (PGC-1b) (basal and pressure overload). The objective was understood the role in the dynamics of cardiac metabolism. We analyzed cardiac structure (histology and stereology), cardiac function (echocardiography and the working heart technique), metabolism (glucose uptake), hormonal action (Western Blotting), gene expression (RT-PCR) from enzyme metabolism (lipid, carbohydrates, respiratory chain, transcriptional and hypertrophic factors) and mitochondrial function. We found in CIRS12KO, severe cardiac dysfunction, mitochondrial dysfunction and reduction of gene expression. And in the PGC-1bKO when subjected to pressure overload, the progression to heart failure, with mitochondrial dysfunction, and alteration of gene expression from enzyme metabolism. The data show that changes on cardiac metabolism and gene expression in both models explain the metabolic pathways that lead to compensated hypertrophy to HF. We suggest that the mitochondrial dysfunction and the gene expression was possible mechanisms for HF. We conclude that IRS and PGC-1b are key factors of cardiac dynamics, which are essential to the structure and heart function. IRS and PGC-1b represent a promising target for limiting the transition from compensated cardiac hypertrophy to heart failure...


Subject(s)
Animals , Rats , Cardiomegaly/complications , Gene Expression/genetics , Heart Failure/etiology , Heart Failure/pathology , Mice , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , PPAR-beta/therapeutic use , Insulin Receptor Substrate Proteins/genetics , Insulin Receptor Substrate Proteins/metabolism , Mice, Knockout
SELECTION OF CITATIONS
SEARCH DETAIL